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Large air pressure changes 
triggered by P‑SV ground motion 
in a cave in northern Taiwan
Chieh‑Hung Chen1,2*, Yang‑Yi Sun1, Li‑Ching Lin3, Peng Han4, Huai‑Zhong Yu5, 
XueMin Zhang6, Chi‑Chia Tang1,2, Chun‑Rong Chen7, Horng‑Yuan Yen8, Cheng‑Horng Lin9, 
Jann‑Yenq Liu7,10,11 & Ching‑Ren Lin9

Acoustic‑gravity waves are generally considered to be one of the major factors that drive changes 
of the total electron content in the ionosphere. However, causal mechanisms of couplings between 
sources in the lithosphere and responses in the atmosphere and the ionosphere are not fully 
understood, yet. A barometer in the cave of the SBCB station records an unusual phenomenon of 
larger amplitudes in air pressure changes inside than those at the Xinwu station (outside). Accordingly, 
the comparison between the recorded data at the SBCB and Xinwu station can drive investigations 
of potential sources of the unusual phenomenon. Analytical results of phase angle differences reveal 
that the air pressure outside the cave at the Xinwu station often leads air pressure changes inside 
at the SBCB station at relatively low frequency bands. In contrast, the larger pressure changes at 
frequencies >  ~ 5 ×  10–4 Hz inside the cave at the SBCB station lead smaller changes outside at the 
Xinwu station. To expose causal mechanisms of the unusual phenomenon, continuous seismic 
waveforms are further conducted for examination. When the horizontal and vertical ground velocities 
of ground vibrations yield a difference in the phase angle close to 90°, coherence values between 
the air pressure changes and ground vibrations become large. This suggests that the pressure‑shear 
vertical ground vibrations can drive air pressure changes. Meanwhile, the results shed light on 
investigating the existence of acoustic waves near the Earth’s surface using a partially confined space 
underground due to that the assumptions of the waves can propagate upward into the atmosphere 
driving changes in the ionosphere.

Previous  studies1–11 reported that acoustic waves can propagate from the Earth’s surface upward to the atmosphere 
and drive changes in electron density in the ionosphere. However, acoustic waves originate from ground vibra-
tions that is obscured and difficult to be identified. The difficulty is mainly caused by seismic waves generally 
comprising of complex vibrations. Meanwhile, excited acoustic waves disperse in an open area (i.e., near the 
Earth’s surface) and become weak, accordingly.

A barometer is one of the scientific instruments that is generally installed above the Earth’s surface and is 
utilized to monitor variations of atmospheric pressure in a particular environment. The monitoring collects 
useful information (i.e., atmospheric pressure) to help weather analysis and to forecast short-term changes in 
the weather for further evaluating impacts on human  life12,13. Alternatively, the observation exhibits low-noise 
characteristics in caves and/or tunnels with rare artificial activities due to that the environment inside can miti-
gate influence from weather and artificial activities outside. The recorded data can be utilized as references for 
correcting responses of air pressure on distinct geophysical  measurements14.
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A cave of the SBCB station is located at (24.79°N, 120.98°E) with the altitude of ~ 141.5 m beneath the Eight-
een-Peaks Mountain in the northeastern Taiwan (Fig. 1a). The cave was built for bomb shelter in 1941 (https:// 
gps. moi. gov. tw/ SSCen ter/ Intro duce/ Intro duceP age. aspx? Page= Gravi ty4). Aisles inside the cave exhibit as a “U” 
sharp. The cave wall is rocks covered by calcium silicate boards and tiles. The width and the height of the cave is 
about 1.2–1.5 m and 1.8 m, respectively. The cave is under overburden soils with a thickness of about 40 m that 
causes the stable temperature and structural  integrity14. Meanwhile, influence from groundwater is relatively 
small due to that the groundwater is static and its level is about 23 m lower than the cave. Doors were set up in the 
both entrances of the cave to avoid interference from artificial activities. A broadband seismometer was installed 
at the innermost of the cave (Fig. S1–S4), where is about 38 m away from the entrances, due to that the interior 
of the cave can eliminate the effects of the artificial activity and severe weather outside the cave. A barometer of 
the Setra’s Model 278 with an accuracy of ~ 0.3 mb and a sampling interval of 1 s was installed beside a broad-
band seismometer (Fig. S5) for correcting unwanted influence from air pressure changes on seismic  data15,16. 
All the efforts are benefit to high-quality  data14. Note that the other barometer of the Setra’s Model 270 with an 
accuracy of about 0.05% of the full scale and a sampling interval of 1 min was installed at the Xinwu (operated 
by the Central Weather Bureau in Taiwan code 467,050) weather station (25.00°N, 121.05°E,Fig. 1a) with the 
altitude of ~ 20 m, where is approximately 25 km away from the cave. The barometer was set a few meters above 
the Earth’s surface for routinely monitoring changes in air pressure dominated by the weather.

Air pressure changes inside (SBCB) and outside (Xinwu) the cave from February 1 to 5 in 2016 are plot-
ted in Fig. 1b with the same scale (8 mb) of the Y axes for fair comparison. The air pressure outside the cave at 
the Xinwu station is mainly ranged from 1016 to 1024 mb. Alternatively, the air pressure inside the cave at the 
SBCB station is ranged from 1004 to 1012 mb. The discrepancy is considered to be contributed by difference of 
altitudes (121 = 141–20 m) between these two barometers based on the decrease rate (1 mb / 9 m) close to the 

Figure 1.  Locations and analytical results of air pressure data at Xinwu and SBCB stations. The locations of 
the two stations are shown in (a). The variations in air pressure during February 1–5 in 2016 are shown in (b). 
Black and blue lines denote the variations in air pressure at Xinwu and SBCB stations, respectively. Red arrows 
indicate the amplified variations in air pressure in the cave at SBCB station. The Magnitude-Square Coherence 
(MSC) varied with frequency that is shown in (c). Green (red) open circles denote changes in air pressure 
at Xinwu station that lead (lag) to variations in the cave at SBCB station by utilizing the phase angle at each 
frequency. (d) The statistical results of the leading values with a coherence > 0.35 determined by the odds test 
with a moving window of 5 events.

https://gps.moi.gov.tw/SSCenter/Introduce/IntroducePage.aspx?Page=Gravity4
https://gps.moi.gov.tw/SSCenter/Introduce/IntroducePage.aspx?Page=Gravity4
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Earth’s surface. Air pressure data show the semidiurnal variations and exhibit in-phase changes at the Xinwu and 
SBCB stations (Fig. 1b). Amplitudes of noise at both stations are about 0.1 mb. According to the comparison, 
amplitudes of the pressure perturbations at the SBCB station are roughly comparable from February 1 to 3 in 
2016. In contrast, the amplitudes are approximately 0.5 mb greater than those at the Xinwu station particularly 
from February 4 to 5 in 2016 (red arrows in Fig. 1b as examples). The great amplitude inside the cave is an unu-
sual phenomenon due to that artificial activities are rare, which leads us to investigate a causal mechanism of 
the large pressure changes at the SBCB station.

Methodology and analytical results
We assessed the coherence of the amplitude within a particular frequency band using the Magnitude-Square 
Coherence (MSC)  index17. The MSC was computed from the bivariate time series using a subroutine called 
“mscohere” in MATLAB. The MSC can identify significant frequency-domain correlations between two time 
series datasets. Meanwhile, phase angle estimates in the cross spectrum are useful for understanding where sig-
nificant frequency-domain correlations exist. The differences in the phase angles of a particular frequency band 
were computed to understand the leading (or lagging) of air pressure changes at the Xinwu and SBCB station.

We down sampled the air pressure data retrieved from the SBCB station to a sampling interval of 1 min for 
fairly comparing with them obtained fdrom the Xinwu station utilizing the MSC index. The air pressure data at 
the Xinwu and SBCB stations exhibit coherence values close to 1 near a frequency of 3 ×  10–5 Hz (~ semi-diurnal; 
Fig. 1c). The green circles at the particular frequency band in Fig. 1c reveal that variations in air pressure outside 
the cave at the Xinwu station occurred before (leaded) variations in air pressure inside the cave at the SBCB 
station. The coherence rapidly decreases and roughly maintains in a relatively-low stage of < 0.2 at frequen-
cies > 2 ×  10–4 Hz (without any circle mark in Fig. 1c). This suggests that the air pressure changes at these two 
stations are irrelevant in the relatively-high frequency band. However, the red circles lie on the coherences > 0.35 
that can be frequently observed at frequencies > 2 ×  10–4 Hz in Fig. 1c. This suggests that variations in air pres-
sure inside the cave at the SBCB station lead them outside at the Xinwu station. The variations outside the cave 
lag behind them inside the cave that is entirely different from our common senses (i.e., the pressure variations 
should be relatively-small and quiet inside, if the variations inside are due to weather and human activity outside).

We further filtered the air pressure data using a low-pass filter of  10–4 Hz for re-examining the coherence 
and the unusual phenomena. Figure 2a shows similar variations of filtered air pressure data at the two stations 
that is in agreement with the coherence values close to 1. The filtered data at the two stations were processed by 
using the cross-correlation method to estimate a time lag of them (Fig. 2b). The maximum value can be obtained 
when the filtered data outside the cave about one minute lead them inside. The leading is in agreement with the 
analytical results of phase angle in the MSC index (shown in Fig. 1c). Figure 2c shows the amplitudes of the air 
pressure at the SBCB and Xinwu stations in the frequency domain during February 1–5 in 2016. The amplitudes 
are roughly comparable at two stations due to a short distance of about 25 km. Note that the amplitude at the 
Xinwu station is slightly larger than it in the SBCB station, particularly in a high frequency band. This suggests 
that noise levels at the Xinwu station are higher than them at the SBCB station due to weather perturbations 
outside the cave. Figure 2d reveals the amplitudes at the two stations during the days (i.e., February 4–5 in 2016) 
with the unusual phenomena. Discrepancy in the amplitudes can be frequently found at frequency > approxi-
mately 4 ×  10–4 Hz. The frequency is in agreement with it that variations of the air pressure inside the cave lead 
them outside determined by using the MSC index shown in Fig. 1c.

To further examine the facticity of the unusual phenomena determined from relatively-unobvious values of 
the coherence, the odds  ratio18–20 is defined as p/(1-p) where p is the probability of success and is used in this 
study to show if the leading events were statistically significant. Notably, with an odds ratio near one, a success 
(i.e., an enhancement in this study) was more likely than a failure. We calculated the odds ratios by dividing the 
number of the leading events by the number of the lagging ones within a moving window of 5 events. The odds 
ratios are obviously larger than one in particular frequency bands (e.g., close to 1 ×  10–4 Hz, 4 ×  10–4–7 ×  10–4 Hz, 
1 ×  10–3 Hz, 1.7 ×  10–3, 4 ×  10–3 Hz, 6 ×  10–3 and 8 ×  10–3 Hz in Fig. 1d). This suggests that those promising lead-
ing events can pass the statistical test (i.e., the odds ratio > 1) and exist in the observation data in the particular 
frequency bands. In short, we found that air pressure with an amplitude of approximately 0.5 mb at the SBCB 
station is larger than it at the Xinwu station. Variations of the air pressure at the SBCB station is mainly dominated 
by those outside the cave for the relatively-low frequency band (< 2 ×  10–4 Hz). In contrast, for the relatively-high 
frequency band (> 2 ×  10–4 Hz), variations of the air pressure at the SBCB station can lead them at the Xinwu 
station. The large amplitude at the SBCB station is mainly limited within the relatively-high frequency band.

Discussions
Variations of the air pressure at the SBCB station lead those at the Xinwu station in the relatively-high frequency 
band of > 2 ×  10–4 Hz (Fig. 1c). This suggests that the air can be squeezed out from the cave in the relatively-high 
frequency band. Even the air can be squeezed out from the cave, the pressure perturbations at the Xinwu sta-
tion caused by air blowing remains questionable due to that the difference of 0.5 mb becomes smaller with the 
propagation via dispersion. Previous  studies5,21–23 reported that changes in air pressure can be triggered by the 
arrival of propagating Rayleigh-like (Pressure-Shear vertical; P-SV) waves. Thus, beside the air blowing in the 
atmosphere, large-scale ground motion forces the ground and perturbs the air that can be one of the candidates 
for resulting the lags. The large-scale ground motion amplifies variations in air pressure changes inside the cave 
due to the confinement of the surrounding rocks and influences surface air pressure. In other words, relatively-
large variations should result from activities inside the cave or beneath the ground that shows the possible con-
nection between changes in ground vibrations and air pressure changes.
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To examine the connection, continuous seismic waveforms (i.e., seismic data) were also analyzed in this 
study to understand how ground vibrations trigger air pressure variations. We down sampled the continuous 
seismic waveforms to a temporal interval of 1 min for fair comparison with the air pressure data (Fig. 3a). We 
computed the maximum horizontal amplitude as the horizontal component (Fig. 3a) by using the East–West 
and North–South ground velocities utilizing the method proposed by Tanimoto et al.24. We further computed 
the coherence and the phase angle difference varying with frequencies between the vertical ground velocity 
and the air pressure at the SBCB station in the entire study period (i.e., from Feb. 1 to 5 in 2016,Fig. 3c). A low 
coherence close to 0.1 in most of the frequency bands (Fig. 3c) suggests that, in a typical condition, changes in 
air pressure are generally uncorrelated to ground vibrations. However, the ground vibrations lead to changes 
in air pressure at the SBCB station (red circles in Fig. 3c), which can be observed in the frequency bands (e.g., 
close to 4 ×  10–4–7 ×  10–4 Hz, 1.5 ×  10–3–5 ×  10–3 Hz, 6 ×  10–3–7 ×  10–3 Hz in Fig. 3c,e) that exhibits the relatively-
high coherences (> 0.35). Although the coherence values are not obvious, the relatively-high values suggest that 
changes of the air pressure in the cave are probably dominated by the ground vibrations at the SCBC station in 
these particular frequency bands.

We constructed a background distribution by using the phase angle differences between the horizontal and 
vertical components of the seismic data at the SBCB station for the situation of the ground vibrations leading 

Figure 2.  The power spectra of the air pressure data at the SBCB and Xinwu stations and their cross-correlation 
results in the particular frequency band. The air pressure data retrieved from two studied stations are filtered by 
using a low-pass filter of  10–4 Hz shown in (a). The cross-correlation results of the filtered data are shown in (b). 
The air pressure data during February 1–5 and February 4–5 in 2016 are transferred into the frequency domain 
shown in (c) and (d), respectively. Notably, the black and blue lines denote variations of the amplitudes with a 
running average of 5 continuous points at the Xinwu and SBCB stations, respectively.
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changes of the air pressure with coherence values > 0. Comparison distributions are constructed by the phase 
angle differences for the situation with coherence values larger than the thresholds varying from 0.1 to 0.4 with 
a step of 0.1. The background and comparison distributions are normalized by the total number of them. The 
normalized background distribution is subtracted from the normalized comparison one and the obtained residual 
is further divided by the normalized background distribution to understand the variations of the phase angle 
differences to the background. No obvious characteristics can be found from the variations for the coherence > 0.1 
(Fig. 3g). The variations are significant for the phase angle difference ranged between − 80° and − 100° that can 
be obviously observed for the coherence > 0.3 (Fig. 3g). Analytical results suggest that ground vibrations with 
P-SV type vibrations can trigger changes of the air pressure.

We thus investigated whether air pressure at the Xinwu station changes accordingly or dissipates due to 
dispersion. We examined the relationship between ground vibrations at the TATO station (24.97°N, 121.50°E) 

Figure 3.  Variations in horizontal and vertical ground velocities and their comparison with air pressure data 
at the SBCB and around Xinwu stations. The seismic data and analytical results at the SBCB and around Xinwu 
stations are shown in the left and right panels, respectively. The variations in the horizontal and vertical ground 
velocities at the SBCB and the TATO stations, which is located close to the Xinwu station, are shown in (a) 
and (b). The coherence between the vertical ground velocity and air pressure at the SBCB and around Xinwu 
stations is shown in (c) and (d), respectively. Red (green) open circles denote that changes in ground velocity 
lead (lag) variations in air pressure. (e) and (f) show the odds ratios with a moving window of 5 events for a 
coherence > 0.35 in (c) and (d). The odds test reveals that the leading values are clustered at a few particular 
frequency bands. (g) and (h) demonstrate the variations of the phase angle differences for the situation with 
coherence values larger than the distinct thresholds at the two stations, respectively.
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retrieved from Incorporated Research Institution for Seismology (IRIS, https:// www. iris. edu/ hq/) (Fig. 3b) and 
changes in the air pressure at the Xinwu station by using the same method. Similarly, changes in air pressure at 
the Xinwu station are almost uncorrelated with ground motion, except for several specific frequencies close to 
3 ×  10–4–2 ×  10–3 Hz and 3 ×  10–3–8 ×  10–3 Hz (Fig. 3d,f). Meanwhile, the variations to the background are signifi-
cant for the phase angle differences ranged between − 120° and − 100° and at 140° (Fig. 3h). The range between 
− 120° and − 100° roughly yields an agreement with it observed from the SBCB station. We further computed 
the amplitudes of the seismic vertical velocity retrieved from the TATO and SBCB stations utilized the Fourier 
transform during the period of February 1–5 and February 4–5 in 2016 shown in Fig. 4. Enhancements can be 
roughly found in a frequency band of about  10–4–10–3 Hz during February 1–5, in 2016 (Fig. 4a). The enhance-
ments become obvious in a wide frequency band of about  10–4–3 ×  10–3 Hz during February 4–5, in 2016 (Fig. 4b). 
An agreement of the enhancements in the frequency band suggests that a coupling between ground vibrations 
in the lithosphere and variations of the air pressure in the atmosphere close the Earth’s surface.

We try to evaluate air pressure changes dominated by variations of the volume of the cave through the ideal 
gas  law25. We assumed that the total number of moles and temperature of the air inside the cave are constant, 
while ground vibrations trigger changes in air pressure without break and/or damage. The volume of the cave in 
this study is approximately 270.00 (= 1.5 in width × 1.8 in height × 100 in length)  m3. If the P-SV ground vibrations 
contribute variations of ± 0.25 mb in air pressure, the changes of the volume are about 0.14  m3, accordingly, for 
maintaining the product of the air pressure and the volume. If the changes of the volume are mainly contributed 
by the vertical component of the vibrations, the amplitude of the ground vibrations in the cave is about  10–3 m. 
The comparable results between the observation and the model suggest the large air pressure changes in a cave 
can be attributed to the P-SV-type ground vibrations.

If the P-SV ground vibrations can drive changes in air pressure, the question is how often the interaction can 
be detected. The interaction of events by using both the P-SV ground vibrations and a coherence value > 0.3 at 
each particular frequency can be determined. The total number of interaction events was generally maintained 
at 20 during the study period of 930 days (from January 1, 2015 to July 19, 2018; in Fig. 5). This finding suggests 
that interactions permanently occur every day. These interactions could be dominated by P-SV ground vibra-
tions, which are unclear and not fully understood in the world.

Figure 4.  Amplitudes of seismic vertical velocities at the SBCB and TATO stations during the study periods. 
Seismic vertical velocities during February 1–5 and February 4–5 in 2016 are down sampled to a temporal 
interval of 1 min and are transferred into the frequency domain using the Fourier transform shown in (a) and 
(b), respectively. Notably, the black and blue lines denote variations of the amplitudes with a running average of 
5 continuous points at the TATO and SBCB stations, respectively. The vertical dash lines denote the frequency at 
 10–4 Hz and  10–3 Hz.

https://www.iris.edu/hq/
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Conclusion
This study proposes an efficient method to document the physical evidence of the P-SV type ground vibrations 
triggering changes in air pressure near the Earth’s surface. When the ground motion with the P-SV type is related 
to microseisms, the air pressure can change accordingly. The air pressure in caves can be amplified by the exist-
ence of the P-SV type vibrations due to the interior space being partially confined (similar to press a rubber air 
ball). Thus, the air pressure retrieved from a barometer inside a cave is sensitive to the P-SV type vibrations.

The novel observation sheds light on extension of the use of a cave and/or a tunnel. The amplified air pressure 
triggered by the P-SV type vibrations creates an excellent opportunity to study the origin of acoustic waves from 
ground motion. Air pressure data observed in a cave and/or a tunnel can become a treasure, while scientists 
want to prove the existence of acoustic waves that propagate upward and drive changes in the atmosphere. On 
the other hand, the P-SV type ground vibrations can be often observed in microseisms and surface waves after 
earthquake occurrence. When stable environments of air pressure are seriously concerned in a cave, the effects 
of the P-SV type ground vibrations have to be taken into consideration.

Availability of data and materials
Seismic waveform data and air pressure data at SBCB station were provided by the Institute of Earth Sciences, 
Academia Sinica, Taiwan. The air pressure data at Xinwu station were provided by the Central Weather Bureau, 
Taiwan. Those data can be downloaded at the website of https:// doi. org/ 10. 5061/ dryad. 05qft tdzh.
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